$\bf{Structure}$ and magnetic properties of a high-spin $\bf{Mn_6}^{\rm{II}}Cr^{\rm{III}}$ cluster containing **cyano bridges and Mn centres capped by pentadentate ligands**

Richard J. Parker,*a* **Leone Spiccia,****a* **Kevin J. Berry,***b* **Gary D. Fallon,***a* **Boujemaa Moubaraki***a* **and Keith S. Murray***a*

a School of Chemistry, PO Box 23, Monash University, Victoria, 3800, Australia. E-mail: leone.spiccia@sci.monash.edu.au

b Westernport Secondary College, Hastings, Victoria 3915, Australia

Received (in Cambridge, UK) 1st September 2000, Accepted 11th January 2001 First published as an Advance Article on the web 1st February 2001

The formation of an elaborate H-bonding network between heptanuclear cations, consisting of a hexacyanochromate capped by six [Mn(dmptacn)]2+ moieties, and hexacyanochromate counterions results in the assembly of novel 1-D chains with short-range ferrimagnetic behaviour occurring between the $S = 27/2$ clusters and $S = 3/2$ ions.

A major challenge in the field of molecular magnetism is to design discrete polynuclear entities with high-spin ground states and tunable magnetic properties.1–3 Such materials allow the study of the transition from molecular to bulk-like magnetic behaviour exhibited by, for example, bulk ferromagnets. An important area is that of 'single-molecule' magnets based on high-spin clusters, *e.g.* $Mn_12O_{12}(O_2CR)_{16}(OH_2)_4$, for which magnetic anisotropy and negative zero-field splitting are prerequisites.1,2 One approach to isolating discrete molecules with high-spin states, albeit of a symmetrical type, has focussed on the use of hexacyanometallates as building blocks in the construction of heterometallic assemblies. $4-7$ We have reported the structure of $[Fe{(CN)Cu(tpa)}_{6}] (ClO₄)_{8}.3H₂O, [tpa =$ tris(2-pyridylmethyl)amine]. While this was the first heptanuclear complex of this type to be structurally characterized, new techniques, such as X-ray MCD, have since been applied to probe the magnetisation in Mn₆^{II}Cr^{III} and Ni₆^{II}Cr^{III} complexes, for which X-ray structures were not obtained.6 Two other structurally characterised cyano-bridged clusters with large high-spin ground states were reported recently.^{8,9} Based on octacyanometallates, they consist of $Mn^{II} Mv_6$ fully-capped cubane structures but, surprisingly, that with $M = W^8$ has an *S* $= 39/2$ ground state (*i.e.* $\overline{S} = 9\overline{S}_{\text{Mn}} - 6S_{\text{W}}$) while that with M = Mo⁹ is reported to have an $S = 51/2$ ground state (*i.e.* $S = 9S_{\text{Mn}}$) + 6S_{Mo}). Inter-cluster coupling, *via* H-bonded pathways, led to long-range order being observed in the Mo case⁹ while some features of single molecule magnetism were noted in the W case.8 We report here the structure and magnetism of $[\{Mn(dmptach)(CN)\}_{6}Cr][Cr(CN)_{6}](ClO₄)_{6} \cdot 6H₂O$ **1** [dmptacn **=** 1,4-bis(2-methylpyridyl)-1,4,7-triazacyclononane], a complex featuring intimate H-bonding between heptanuclear $[\{Mn^{II}(dmptacn)(CN)\}_{6}Cr^{III}]^{9+}$ cations and $[Cr(CN)_{6}]^{3-}$ counter anions.

Complex **1** initially formed in an aqueous solution containing a 1:6 mixture of $[Cr(CN)₆]$ ³⁻ and $[Mn(dmptacn)(OH₂)]$ ²⁺, a reactant ratio expected to yield a heptanuclear complex. However, microanalysis and crystallography confirmed a $Mn:Cr$ ratio of 3:1, and the IR spectrum exhibited CN stretches attributable to both bridging and terminal CN groups. Reactant ratios corresponding to the product stoichiometry afforded better yields of 1.† The encapsulation of $[Cr(CN)_6]^{3-}$ by six [Mn(dmptacn)]2+ moieties has generated a heptanuclear cation [Fig. 1(a)] whose 9+ charge is balanced by one $[Cr(CN)_6]$ ³⁻ and six perchlorates even in the presence of excess $ClO₄$. This gives rise to a novel crystallographic feature described below.‡

The geometry of the Cr centres in **1** is little distorted from octahedral, *viz.*, C–Cr–C(*cis*) and C–Cr–C(*trans*) angles are

close to 90 and 180°, respectively, and the Cr–C–N angles in both the 'capped $Cr(CN)₆$ ' core and $[Cr(CN)₆]$ ³⁻ anions are almost linear. These features are common to clusters incorporating $[Cr(CN)₆]^{3,11}$ except for $(VO)₃[Cr(CN)₆]_{2} \cdot 10H₂O₂ \cdot 10₁₁$ The Mn–N–C(CN) angles in **1** [158.4(5)°] deviate from linearity [Fig. 1(b)]. Such deviations have been found in extended lattices formed by cyanometallates and manganese chelates¹² but not in discrete molecules like **1**. For each MnII centre, the CN ligand is *cis* to the secondary amine of dmptacn,¹³ and the Mn^{II} cations adopt a geometry intermediate between trigonal prismatic and octahedral. A trigonal twist angle of 29.2° is calculated from the orientation of the three tacn N atoms relative to the two pyridyl and cyano N atoms. The slightly bent *trans*-C=N–Mn–N angles [164.9(2)°] cause the three sets of *trans*-Cr– C=N–Mn units to adopt *anti*-configurations.

Intimate H-bonding interactions exist between the terminal CN nitrogens in the $[\text{Cr(CN)}_6]^{3-}$ counter ion and the hydrogen on the sec. amine of dmptacn [Fig. 1(c)]. The C $=N \cdots H-N$ distance is 2.53 Å while the C $=N \cdots N$ distance is 3.075(7) Å.

Fig. 1 (a) View of the heptanuclear cation in **1**; (b) atomic labeling scheme (50% probability ellipsoids); (c) 1-D chains formed by H-bonding between the cyano groups on the $[Cr(CN)_6]^{3-}$ counter ion and the secondary amine proton on each dmptacn. Selected bond lengths (Å) and angles (°): Cr1–C19 2.074(6), Cr2–C20 2.050(6), Mn1–N1 2.316(4), Mn1–N2 2.306(4), Mn1– N3 2.236(5), Mn1–N4 2.308(4), Mn1–N5 2.197(4), Mn1–N6 2.196(5), C19–N6 1.150(6), C20–N7 1.173(7), Cr1…Mn1 5.318, Cr2…Mn1 5.849, Cr1…Cr2 6.882, N3…N7b 3.075(7); Cr1–C19–N6 175.0(5), Cr2–C20–N7 177.5(5), Mn1–N6–C19 158.4(5), N1–Mn1–N2 75.4(1), N1–Mn1–N3 76.7(2), N1–Mn1–N5 75.4(2), N1–Mn1–N6 164.9(2), N2–Mn1–N5 140.0(2), N3–Mn1–N4 146.6(2), N3–Mn1–N5 122.3(2), N3–Mn1–N6 88.7(2), N5–Mn1–N6 110.1(2).

This interaction results in a pseudo 1-D chain of alternating $[\{Mn(dmptach)(CN)\}_{6}Cr]^{9+}$ cations and $[Cr(CN)_{6}]^{3-}$ anions running along the *c*-axis. Each complex anion is sandwiched between two heptanuclear cations, forming three H-bonds to one of the two sets of three sec. amine N atoms on each cation. Of importance to the supramolecular assembly of the cations and anions into H-bonded 1-D chains is the geometric arrangement of each set of three sec. amine N atoms, and their hydrogens, at the corners of an equilateral triangle (thus, the cation has a C_{3v} axis of symmetry). The excellent match in the symmetry and size of the extended octahedral faces of $[Cr(CN)_6]$ ³⁻ and these triangular arrays of sec. N atoms facilitate the establishment of H-bonded contacts between the exposed N atoms on the anion and the heptanuclear cations.

Fig. 2 shows the temperature dependence of the $\gamma_M T$, per Mn_6Cr_2 , measured in a field of 1 T. The room-temperature χ_MT value of 27.1 cm³ K mol⁻¹ is slightly lower than the spin-only value of 30.0 expected for an uncoupled spin system $[6(S_{Mn} =$ 5/2), $2(S_{Cr} = 3/2)$] with $g = 2.0$. As the temperature is lowered, $\chi_{\rm M}$ T decreases slightly to a broad minimum of 26.3 at 203 K and then slowly increases to 30.1 at 100 K. As the temperature is decreased further, $\chi_M T$ increases rapidly to a maximum of 71.0 at 12 K. This is below the value expected for a fully antiferromagnetically coupled heptanuclear spin system plus $[Cr(CN)₆]$ ³⁻ [*viz.*, 99.9 cm³ K mol⁻¹ for {6($S_{Mn} = 5/2$) - $(S_{\text{Cr}} = 3/2)$ + $(S_{\text{Cr}} = 3/2)$]. The drop in $\chi_{\text{M}}T$ observed below 12 K can be attributed to a competing intermolecular antiferromagnetic interaction and/or thermal population of low lying Zeeman levels, as noted in other clusters.¹⁴ The χ_M values obey the Curie–Weiss law above *ca*. 140 K with a Weiss constant $\theta = -4.2$ K. This is consistent with intracluster antiferromagnetic coupling. A ground-state spin value of 27/2 for the cluster corresponds to the spins on the Mn^{II} atoms being antiparallel to those on the central Cr^{III}, *i.e.* $6S_{Mn} - S_{Cr}$. This was also the case for the related $Mn^H₆Cr^{III} cluster^{5,6}$ and the $Mn^H₉W^V₆ cluster.⁸ Indeed, a good fit to the χ_MT vs. T data in a$ field of 1 T was obtained using the spin Hamiltonian of Scuiller *et. al.*,⁵ allowing for an additional $S_{Cr} = 3/2$ Curie contribution in **1**. The best-fit, shown in Fig. 2, corresponds to the parameters of $g = 1.96$ and $J_{Cr-Mn} = -5$ cm⁻¹ $(J_{Mn-Mn} 0)$ which are similar to those for $[Mn(L)(NC)_6Cr]^{9+}$ {*g* = 1.97; *J*_{Cr–Mn} = -8.0 cm^{-1} , L = *N,N,N'*-[tris(2-pyridylmethyl)-*N'*-methylethane)-1,2-diamine}.5,6 The ability to simulate the maximum in $\chi_M T$ at 12 K, using the thermodynamic form of the susceptibility,¹⁴ shows that field-dependent Zeeman level depopulation effects are responsible for this maximum.

The broad minimum in $\chi_M T$ noted at 203 K most likely reflects short-range 1D-ferrimagnetic behaviour occurring through weak antiferromagnetic coupling between the $S = 27/2$ cation and the $S = 3/2$ $[Cr(CN)_6]^{3/2}$ *via* the H-bonding pathways that connect them. Tests for long-range order in **1** proved negative. Thus, the field-cooled and zero-field magnetization data at very low temperatures, in $H = 50e$, showed no bifurcation. At low-fields and 2 K, the magnetization, *M*, increases rapidly with increasing fields then saturates above *H*

Fig. 2 Plots of $\chi_M T (\blacksquare)$ and $\chi_M^{-1} (\lozenge)$ per $Mn_6^{\text{II}}Cr_2^{\text{III}}$, for 1 *vs. T* measured in a field of 1 T . The solid line was calculated using the heptanuclear model (see text).

 $=$ \approx 2 T to a M_{sat} value of 24 μ_{B} , a value consistent with the 1Dferrimagnet proposal. There is no hysteresis in magnetization at 2 K. Further, the rapid increase in *M* observed at low fields, such as 100 and 50 Oe, lead to values of $\chi_{\rm M}T$, as a function of temperature (50–2 K) which do not show the maximum of Fig. 2. Anomalously high values are observed, that continue increasing as *T* is decreased, reaching $\chi_M T$ of 358 cm³ K mol⁻¹ at 2 K. Such behaviour gives further confirmation of **1** being a 1D-ferrimagnet. However, further work, including ac susceptibility measurements, is needed to fully understand this unusual behaviour at low temperatures and variable fields. Finally, we note that Hashimoto and coworkers,15 have obtained a 3-D network in their octacyanotungstate(v)– $Mn(\text{II})$ species which is a ferrimagnet displaying long-range order ($T_c = 54$ K) and with W–CN–Mn chains linking the clusters.

Financial support from the Australian Research Council is gratefully acknowledged.

Notes and references

† *Experimental details*: **Caution!** Perchlorates are potentially explosive and should be handled in small quantities. An aqueous solution of $K_3[Cr(CN)_6]$ (0.05 g, 0.15 mmol) was added to a stirring solution of [Mn(dmptacn)- $(OH₂)] (ClO₄)₂¹³ (0.26 g, 0.44 mmol)$ in water (45 ml), resulting in a change from colourless to pale yellow. Evaporation of this solution gave yellow needles of $[Cr{(CN)Mn(dmptacn)}\overline{6}] [Cr(CN)\overline{6}] (ClO_4)\overline{6} \cdot 6H_2O$ suitable for crystallography (yield: 0.16 g, 37%). Anal Calc. for crystallography (yield: 0.16 g, 37%). Anal Calc. for $C_{120}H_{162}N_{42}Cl_6O_{30}Mn_6Cr_2$: C, 43.4; H, 4.9; N, 17.7. Found: C, 43.3; H, 5.0; N, 17.5%. IR (KBr, cm²1): 3632, 3543 (H2O); 3330 (N–H); 2142, 2118 (C=N); 1608vs, 1572m (py); 1097vs, 624 (ClO₄).

 \ddagger *Crystal data* for **1**: C₁₂₀H₁₆₂N₄₂Cl₆O₃₀Mn₆Cr₂, *M* = 3319.2, trigonal, space group $R\bar{3}$ (no. 148), $a = 30.1382(9)$, $c = 13.7641(9)$ Å, $V =$ $10827.1(7)$ \AA ³, $Z = 3$, $D_c = 1.386$ g cm⁻³, $\mu = 8.31$ cm⁻¹, $F(000) = 4686$, $T = 173$ K, Nonius Kappa CCD, Mo-K α radiation ($\lambda = 0.71069$ Å), $2\theta_{\text{max}}$ $= 56.5^{\circ}$, ϕ -scans, 5378 unique data, final *R* = 0.062, *wR* = 0.056 for 2908 observed reflections $[I > 3.00\sigma(I)]$ and 311 variables. The structure was solved by and expanded using Fourier techniques and non-hydrogen atoms refined anisotropically. CCDC 182/1889. See http://www.rsc.org/suppdata/ cc/b0/b007113g/ for crystallographic files in .cif format.

- 1 R. Sessoli, D. Gatteschi, A. Caneschi and M. A. Novak, *Nature*, 1993, **365**, 141.
- 2 Z. Sun, D. Ruiz, E. Rumberger, C. D. Incarnito, K. Folting, A. L. Rheingold, G. Christou and D. N. Hendrickson, *Inorg. Chem.*, 1998, **37**, 4758 and references therein.
- 3 D. Gatteschi, A. Müller, F. Peters and M. Pope, *Chem. Rev.*, 1998, **98**, 239; D. Gatteschi, G. L. Abbati, A. Cornia, A. C. Fabretti and A. Caneschi, *Inorg. Chem.*, 1998, **37**, 3759.
- 4 T. Mallah, C. Auberger, M. Verdaguer and P. Veillet, *Chem. Commun.*, 1995, 61.
- 5 A. Scuiller, T. Mallah, M. Verdaguer, A. Nivorozkhin, J. Tholence and P. Veillet, *New J. Chem.*, 1996, **20**, 1.
- 6 M.-A. Arrio, A. Scuiller, Ph. Saintctavit, Ch. Cartier de Moulin, T. Mallah and M. Verdaguer, *J. Am. Chem. Soc.*, 1999, **121**, 6414.
- 7 R. J. Parker, D. C. R. Hockless, B. Moubaraki, K. S. Murray and L. Spiccia, *Chem. Commun.*, 1996, 2789.
- 8 Z. J. Zhong, H. Seino, Y. Mizobe, M. Hidai, A. Fujishima, S.-I. Ohkoshi and K. Hashimoto, *J. Am. Chem. Soc.*, 2000, **122**, 2952.
- 9 J. Larianova, M. Gross, M. Pilkington, H. Audres, H. Stoeckli-Evans, H. U. Güdel and S. Decurtins, *Angew. Chem., Int. Ed.*, 2000, **39**, 1605.
- 10 D. G. Fu, J. Chen, X. Shi Tan, L. J. Jiang, S. W. Zhang, P. J. Zheng and W. X. Tang, *Inorg. Chem.*, 1997, **36**, 220; T. Mallah, S. Ferlay, J. Vaissermann, F. Bartolome, P. Veillet and M. Verdaguer, *Chem. Commun.*, 1996, 2481; M. Ohba and H. Okawa, *Coord. Chem. Rev.*, 2000, **198**, 313.
- 11 S. Ferlay, T. Mallah, R. Ouahes, P. Veillet and M. Verdaguer, *Inorg. Chem.*, 1999, **38**, 229.
- 12 H. Miyasaka, H. Ieda, N. Matsumoto, N. Re, R. Crescenzi and C. Floriani, *Inorg. Chem.*, 1998, **37**, 255 and references therein.
- 13 S. J. Brudenell, L. Spiccia, A. M. Bond, G. D. Fallon, D. C. R. Hockless, G. Lazarev, P. J. Mahon and E. R. T. Tiekink, *Inorg. Chem.*, 2000, **39**, 881.
- 14 K. Van Langenberg, S. R. Batten, K. J. Berry, D. C. R. Hockless, B. Moubaraki and K. S. Murray, *Inorg. Chem.*, 1997, **36**, 5006.
- 15 Z. J. Zhong, H. Seino, Y. Mizobe, M. Hidai, M. Verdaguer, S.-I. Ohkoshi and K. Hashimoto, *Inorg. Chem.*, 2000, **39**, 5095.